Mode Field Diameter Definitions for Few-Mode Fibers Based on Spot Size of Higher-Order Gaussian Mode
نویسندگان
چکیده
منابع مشابه
Long distance transmission in few-mode fibers.
Using multimode fibers for long-haul transmission is proposed and demonstrated experimentally. In particular few-mode fibers (FMFs) are demonstrated as a good compromise since they are sufficiently resistant to mode coupling compared to standard multimode fibers but they still can have large core diameters compared to single-mode fibers. As a result these fibers can have significantly less nonl...
متن کاملRayleigh scattering in few-mode optical fibers
The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant m...
متن کاملHigher order sliding mode control based on adaptive first order sliding mode controller
This paper presents an adaptive higher order sliding mode controller based on first adaptive sliding mode control and an integral sliding variable. The idea is based on the definition of a nominal control which can stabilize a pure chain of integrators to zero in finite time. The novelty of the proposed approach is that uncertainties/perturbations effects are rejected by a first order sliding m...
متن کاملHigher-order mode suppression in chalcogenide negative curvature fibers.
We find conditions for suppression of higher-order core modes in chalcogenide negative curvature fibers with an air core. An avoided crossing between the higher-order core modes and the fundamental modes in the tubes surrounding the core can be used to resonantly couple these modes, so that the higher-order core modes become lossy. In the parameter range of the avoided crossing, the higher-orde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Photonics Journal
سال: 2020
ISSN: 1943-0655,1943-0647
DOI: 10.1109/jphot.2020.2967628